1. 把下面的谓词公式化成子句集
(∀x)(∃y)(P(x,y)∨Q(x,y)→R(x,y))
解:
(∀x)(∃y)(P(x,y)∨Q(x,y)→R(x,y))
(∀x)(∃y)(P(x, y)∨(¬Q(x, y)∨R(x, y)))
(∀x)(P(x, f(x))∨¬Q(x, f(x))∨R(x, f(x)))
S={P(x, f(x))∨¬Q(x, f(x))∨R(x, f(x))}
2. 用归结反演法证明下面公式的永真性
[提示:先否定它,然后化成子句集,再实施归结和置换,得到最终的NIL(空子句)]
否定:
¬(∃x){[P(x)→P(A)]∧[P(x)→P(B)]}
¬(∃x){[¬P(x)∨P(A)]∧[¬P(x)∨P(B)]}
(∀x){[P(x)∧¬P(A)]∨[P(x)∧¬P(B)]}
(∀x){[P(x)∧¬P(A)]∨P(x)}∧{[P(x)∧¬P(A)]∨¬P(B)}
(∀x){P(x)∧[¬P(A)∨P(x)]∧[P(x)∨¬P(B)]∧[¬P(A)∨¬P(B)]}
(∀x){P(x)∧[¬P(A)∨P(x)]∧[P(x)∨¬P(B)]∧[¬P(A)∨¬P(B)]}
P(x)∧[¬P(A)∨P(x)]∧[P(x)∨¬P(B)]∧[¬P(A)∨¬P(B)]
子句集:
- P(x1)
- ¬P(A)∨P(x2)
- P(x3)∨¬P(B)
- ¬P(A)∨¬P(B)
Comments NOTHING