润哥人工智能习题-推导规约

发布于 2021-06-09  73 次阅读


1. 把下面的谓词公式化成子句集

(∀x)(∃y)(P(x,y)∨Q(x,y)→R(x,y))

解:

(∀x)(∃y)(P(x,y)∨Q(x,y)→R(x,y))

(∀x)(∃y)(P(xy)∨(¬Q(xy)∨R(xy)))

(∀x)(P(xf(x))∨¬Q(xf(x))∨R(xf(x)))

S={P(xf(x))∨¬Q(xf(x))∨R(xf(x))} ​

2. 用归结反演法证明下面公式的永真性

[提示:先否定它,然后化成子句集,再实施归结和置换,得到最终的NIL(空子句)]

否定:

¬(∃x){[P(x)→P(A)]∧[P(x)→P(B)]}

¬(∃x){[¬P(x)∨P(A)]∧[¬P(x)∨P(B)]}

(∀x){[P(x)∧¬P(A)]∨[P(x)∧¬P(B)]}

(∀x){[P(x)∧¬P(A)]∨P(x)}∧{[P(x)∧¬P(A)]∨¬P(B)}

(∀x){P(x)∧[¬P(A)∨P(x)]∧[P(x)∨¬P(B)]∧[¬P(A)∨¬P(B)]}

(∀x){P(x)∧[¬P(A)∨P(x)]∧[P(x)∨¬P(B)]∧[¬P(A)∨¬P(B)]}

P(x)∧[¬P(A)∨P(x)]∧[P(x)∨¬P(B)]∧[¬P(A)∨¬P(B)]

子句集:

  1. P(x1​)
  2. ¬P(A)∨P(x2​)
  3. P(x3​)∨¬P(B)
  4. ¬P(A)∨¬P(B)

如堕五里雾中
最后更新于 2022-03-28